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1. INTRODUCTION :

Solids have definite mass, volume, and shape due to the fixed positions of their constituent
particles. Up to the early 1980s, based on the structure of the material, there were only two
different types of solids: amorphous (e.g.,  coal, glass, plastic, rubber, etc.) and crystals [e.g.,
copper(Cu),  copper sulphate (CuSO4),  NiSO4,  diamond, graphite,  NaCl,  sugar,  etc.].  However,
after  the early  1980s,  three types  of  solids  were known,  namely,  amorphous,  crystals,  and
quasicrystals. Quasicrystals are found most commonly in aluminium alloys (Al-Li-Cu, Al-Mn-Si,
Al-Ni-Co, Al-Pd-Mn, Al-Cu-Fe, Al-Cu-V, etc.), but are also found in several other compositions
(Cd-Yb, Ti-Zr-Ni, Zn-Mg-Ho, Zn-Mg-Sc, In-Ag-Yb, Pd-U-Si, etc.). (Maclá, 2006) 

                                  

  Fig. 1: Amorphous structure of a glassy solid            Fig. 2: Lattice structure of a crystalline solid
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Remark:  The word amorphous  is  derived from the Greek word  ‘morphe’. In Greek the word
'morphe' means shape or form; and hence, amorphous (a + morph + ous) means 'without shape’
or  ‘shapeless'. In condensed matter physics and materials science, an amorphous solid is any
non-crystalline  solid in which the atoms and molecules are not organized in a definite lattice
pattern. (A lattice is a regular arrangement of particles like atoms, ions, or molecules.) Thus an
amorphous solid is a solid that lacks the long-range order characteristic of a crystal. Such solids
include glass, plastic, and gel. Solids and liquids are both forms of condensed matter, and both
are composed of atoms in close proximity to each other. In some older books, the term has been
used synonymously with glass.  Crystalline solids have regular ordered arrays of components
held together by uniform intermolecular forces, whereas the components of amorphous solids
are not arranged in regular arrays. 

Most crystals in nature, such as those in sugar, salt, or diamonds, are symmetrical and all have
the same orientation throughout the entire crystal. In all solid matters, atoms were believed to
be packed inside crystals in symmetrical patterns that were repeated periodically over and over
again. For scientists, this repetition was required in order to obtain a crystal.

               

 
Fig. 3: Crystalline faces: the faces of crystals   can intersect at right angles,

as in galena (PbS) and  pyrite (FeS2), or at other angles, as in quartz.
(Courtesy   U C Davis, ChemWiki)

Fig. 4: Cleavage surfaces of an amorphous           solid:
Obsidian, a volcanic glass with the same chemical 
composition as granite (typically  KAlSi3O8), tends to 
have curved, irregular surfaces when cleaved 
(Courtesy: U C Davis, ChemWiki)

Traditional crystallography has defined a crystalline structure as an arrangement of atoms (in a
lattice) that is periodic in three dimensions with two-, three-, four-, and six-fold (or hexagonal)
rotational symmetry. Crystals have a lattice structure. It has a regular geometrical arrangement
of points in crystal space, i.e., a three-dimensional array of points or lattice points with identical
arrangements of atoms with space filling cubes or hexagonal prisms. It was always believed that
all metals had crystallized materials which were usually made up of unit cells of atoms that are
repeated to form a single uniform structure.
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                                     (a) Three-fold                                              (b) Four-fold

            
                                     (c) Six-fold                                      (d) Five-fold

Fig. 5: Different kinds of symmetries in crystals - the pattern within 
the crystal with five-fold symmetry will never repeat itself

Remark: The structure of a crystal can be seen to be composed of a repeated element in three
dimensions. This repeated element is known as the ‘unit cell’. The unit cell is defined in terms of
the  lattice  (set  of  identical  points).  It  is  the  building  block  of  the  crystal  structure. In
crystallography, the crystal structure is a description of the ordered arrangement of atoms, ions,
or molecules in a crystalline material.  The unit cell is repeated many billions of times in every
direction to obtain acrystal. In three-dimension, the unit cell is any parallelepiped whose vertices
are  lattice  points,  and  in  two-dimension,  it  is  any  parallelogram whose  vertices  are  lattice
points.

As stated above, inside a crystal, atoms are ordered in repeating patterns and depending on the
chemical composition, they have different symmetries. In Fig. 5(a), it is seen that each atom is
surrounded by three identical atoms in a repeating pattern, yielding a three-fold symmetry.  If
the image is rotated 120o, the same pattern can be obtained. The same principle applies to four-
fold symmetries [Fig. 5(b)] and six-fold symmetries [Fig. 5(c)]. The pattern repeats itself, and if
the  image  is  rotated  90  degrees  and  60  degrees,  respectively,  the  same  pattern  appears.
However, with five-fold symmetry [Fig. 5(d)], this is not possible, as distances between certain
atoms will be shorter than those between others. The pattern does not repeat itself, which was
proof enough to scientists that it was not possible to obtain five-fold symmetries in crystals.  The
same applies to seven-fold or higher symmetries.
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2. DISCOVERY OF QUASICRYSTALS:

On the morning of April 8, 1982, an image counter to the laws of nature appeared in Daniel
Shechtman’s electron microscope,  while on sabbatical  (as a visiting scholar)  at  the National
Bureau of Standards in Gaithersburg, Maryland, USA. Professor Shechtman was busy examining
a  rapidly  cooled  metal  alloy  (a  mix  of  aluminium and  manganese).  He  observed a  strange
looking crystal  that did not obey the physical laws that crystals are supposed to obey. “Eyn
chaya kazo”, Shechtman said to himself, — “There can be no such creature” in Hebrew, and he
had turned to the electron microscope in order to observe it at the atomic level. However, the
picture that the microscope produced was counter to all logic: he saw concentric circles, each
made of ten bright dots at the same distance from each other (Fig. 6).

                                                
Fig. 6: Daniel Shechtman's diffraction pattern was ten-fold: rotating
the picture to a tenth of a full circle (36o) results in the same pattern

(Credit: Shechtman; Royal Swedish Academy of Sciences)

It  was always believed that metals had crystallized materials which  were usually made up of
unit  cells  of  atoms  that  are  repeated  to  form  a  single  uniform  structure.  However, while
examining a rapidly cooled mix of aluminium (Al) and manganese (Mn), an alloy with potential
uses in aerospace technologies, Daniel Shechtman found that the atoms packed in this alloy
were in a pattern that could not  be repeated  —  something that was forbidden according to
known chemistry. The atoms in the sample seemed to be arranged in a pattern that had a five-
fold rotational symmetry.

For the first  time Daniel observed a three-dimensional example of a Penrose pattern (to be
discussed  in  Section  4)  in  the  material  world  — quasiperiodic  crystals,  also  known  as
quasicrystals.  (Shechtman,  Blech,  Gratias,  and  Cahn,  1984) An  alloy  of  aluminium  and
magnesium  (Al6Mn)  was  discovered in  the  laboratory  which  exhibited  the  symmetry  of  an
icosahedron with five-fold axis — it showed the kind of symmetries and non-periodic patterns
previously known only theoretically from Penrose’s thick and thin rhombs (or kites and darts).
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Shechtman’s image showed that the atoms in his crystal were packed in a pattern that could
not be repeated. Such a pattern was considered just as impossible as creating a football  — a
sphere — using only six-cornered polygons, when a sphere needs both five- and six-cornered
polygons.  With 5-fold symmetry, once thought to be impossible, they  were first observed by
Daniel  Shechtman  in  an  aluminium-manganese  alloy.  Daniel  named  these  structures  as
quasicrystals. 

It  was always believed that metals had crystallized materials which  were usually made up of
unit  cells  of  atoms  that  are  repeated  to  form a  single  uniform structure.  However,  Daniel
Shechtman, while examining a rapidly cooled mix of  aluminium and manganese, a metal alloy
with potential uses in aerospace technologies, found that the atoms packed in this alloy were in
a pattern that could not  be repeated  —  something that was forbidden according to known
chemistry. The atoms in the sample seemed to be arranged in a pattern that had a five-fold
rotational symmetry.

Daniel moved out from his office into the corridor at the U.S. National Institute of Standards
and Technology (NIST) (in the City of Gaithersburg, in Montgomery County, Maryland) wanting
to find someone with whom he could share his discovery. But the corridor was empty, so he
went back to the microscope to carry out further experiments on the peculiar crystal. Among
other things,  he double-checked if  he had obtained a twin crystal:  two inter-grown crystals
whose shared boundary gives rise to strange diffraction patterns. Many claimed that what he
had observed was in fact a twin crystal; but he could not detect any signs that he was in fact
looking at a twin crystal.

Furthermore, he rotated the crystal in the electron microscope in order to see how far he could
turn it  before the tenfold diffraction pattern reappeared.  That  experiment showed that  the
crystal itself did not have ten-fold symmetry like the diffraction pattern, but was instead based
on an equally impossible five-fold symmetry. Daniel Shechtman concluded that the scientific
community must be mistaken in its assumptions.

Shechtman  had  rapidly  chilled  the  glowing  molten  metal,  and  the  sudden  change  in
temperature  should have created complete  disorder  among the atoms.  But  the pattern  he
observed told a completely different story: the atoms were arranged in a manner that was
contrary to the laws of nature. Shechtman counted and recounted the dots. Four or six dots in
the  circles  would  have  been  possible,  but  absolutely  not  ten.  He  made  a  notation  in  his
notebook: 10-fold???

The diffraction pattern showed that the atoms inside the metal were packed into an ordered
crystal.  That in itself was nothing extraordinary;  almost all  solid materials,  from ice to gold,
consist  of  ordered  crystals.  However,  unexpected  appearance  of  ten  bright  dots  in  each
concentric circle in the material’s diffraction pattern (Fig. 6) initially baffled Shechtman (and
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others)  —  it  was  something  he  had  never  seen  before,  despite  his  vast  experience  using
electron microscopes.  Furthermore,  such a crystal  was not represented in the International
Tables for Crystallography  — the main crystallographic reference guide. At the time, science
plainly stipulated that a pattern with ten dots in a circle was impossible, and the proof for that
was as simple as it was obvious.

Shechtman’s image showed that the atoms in his crystal were packed in a pattern that could
not be repeated. He followed up the initial data with other experiments that also indicated the
material had a five-fold symmetry, a characteristic that was thought to be impossible.

It  was shown that rapid solidification of an aluminum-manganese alloy (Al6Mn) can produce a
solid that diffracts electrons like a crystal but has no lattice-based translational symmetry (as
crystals  do).  A  quasiperiodic  structure  is  generated  using  a  pair  of  polyhedral,  the  three-
dimensional analogues of the two-dimensional Penrose tiles, which tile the plane aperiodically
(discussed  in  detail  Section  4).  These  polyhedra  will  produce  a  diffraction  pattern  when
bombarded with gamma rays (a method of analyzing crystal structures) which suggests that the
two polyhedra occur in the ratio of 1.618:1 (or φ:1, where φ is the golden ratio). These crystals
are now called quasicrystals, or quasiperiodic crystals (‘quasi’ means ‘apparently but not really’),
and they have changed the way chemists view solid state chemistry. (Shechtman, 1986) The
NGR (Nuclear Gamma-ray Resonance) spectrum of this crystal structure appears as shown in
Fig. 7.

Rather  than  finding  a  random  collection  of  atoms  as  expected,  Shechtman  observed  a
diffraction  pattern  with  ten-fold  rotational  symmetry,  something  which  was  thought  to  be
impossible (subsequent experiments would demonstrate that what Shechtman had discovered
was actually five-fold symmetry). Shechtman’s five-fold symmetry defied the basic definition of
a crystal which had stood unchallenged since crystallography’s inauguration as a science some
70 years prior (as stated above). Shechtman later described them as “fascinating mosaics of the
Arabic world reproduced at the level  of atoms.” (Lannin and Veronica,  2011) “An intriguing
feature of such patterns, also found in Arab mosaics, is that the mathematical constant known
as the the ‘golden ratio’,  denoted by the Greek letter  φ (Phi),  occurs over and over again.
Underlying it is a sequence worked out by the great Italian mathematician Leonardo Fibonacci
in  the 13th century CE,  where each number  is  the sum of  the preceding two.” (Lannin  and
Veronica, 2011)

The  foregoing spectrum  (Fig.  7)  displays  two  quadripole doublet  peaks.  The  least-squares
regression fit for these curves saw minimized standard deviations (which is statistically a good
thing — the lower the standard deviation, the closer the data is to the mean) when the intensity
ratio was constrained to be 1.618, the golden ratio (Phi).  This suggests that Phi is involved in
determining  the  spacing  between  the  atoms  in  the  quasicrystalline  lattice  structure.
(Swartzendruber et al, 1985, p. 1384-85)
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Fig. 7: The Nuclear Gamma-ray Resonance (NGR) Spectrum for crystallized Al-Mn alloy (the image from
Swartzendruber et al, 1985, p. 1384). The circles are data points and the solid line is the least squares fit
obtained as described in text. The zero of velocity represents the centre of a pureiron spectrum at room

temperature and positive velocity represents source and absorber approaching.

Quasiperiodic crystals  are regular;  yet,  they form non-repeating patterns (that never repeat
themselves) which usually appear in aluminum alloys. Quasicrystalline patterns comprise a set
of  interlocking  units  whose  pattern  never  repeats,  even  when  extended  infinitely  in  all
directions, and possess a special form of symmetry.

Fig. 8: Daniel Shechtman, who discovered quasicrystals, displays a model at his lab in Haifa, Israel
(Photograph: David Blumenfeld)

However,  Shechtman’s  discovery  was viewed with skepticism;  this  form of  matter,  i.e.,  the
configuration  found  in  quasicrystals,  was  believed  to  be  impossible to  create,  and  Daniel
Shechtman had to fight a fierce battle against established science. “I told everyone who was
ready to listen that  I  had material  with pentagonal  symmetry.  People just  laughed at me,”
Shechtman recalls when he was interviewed in his office at the Israel Institute of Technology at
Haifa,  surrounded by numerous prizes he has  won before the crowning glory of  the Nobel
award. In fact, Shectman lost his job soon after his discovery.
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In early 1982, the head of the laboratory where Daniel Shechtman worked came to his desk
“smiling sheepishly”. Shechtman recalls what happened next: “He put a (crystallography) book
on my desk and said, ‘Danny, why don’t you read this and see that it is impossible what you are
saying.’ And I said, ‘You know, I teach this book. I don’t need to read it. I know it’s impossible,
but here it is. This is something new!’ That person expelled me …. He said, ‘You are a disgrace to
our group. I cannot bear this disgrace.’ And, he asked me to leave the group; so I left the group.
He was a good friend of  mine.”  (Dibben,  2011; Jha,  2013) Shectman was kicked out of  his
university  research group,  of  course this situation had become too embarrassing.  However,
Daniel found a new group that  adopted a  scientific  orphan.  Shechtman recapitulates,  “The
scandal of polywater was still in the air, and I feared for my scientific and academic career.”

That should have been the end of the story were it not for Linus Pauling — a two-time Nobel
prize winner, once for chemistry (in 1954) and a second time for peace (in 1962) — accused him
of “talking nonsense”, and delivered the ultimate insult: “There is no such thing as quasicrystals,
only quasiscientists.” (Ho, 2011; Jha, 2013) This Pauling said at a science conference in front of
an audience of hundreds. Pauling was apparently unaware of a 1981 paper by Hagen Kleinert
(Polish-born German theoretica Physicist) and Kazumi Maki (world-renowned Japanese physicist
in  the  field  of  superconductivity)  which  had  pointed  out  the  possibility  of  a  non-periodic
Icosahedral Phase in quasicrystals. (Kleinert and Maki, 1981)

Shechtman had obtained his PhD degree from Technion, Israel Institute of Technology, Haifa,
Israel, and in 1983, he managed to get Ilan Blech, a colleague at his alma mater, interested in his
peculiar research findings. So, he moved to Technion where Dr. Ilan Blech was perhaps the only
colleague who not only believed in him but who agreed to cooperate with him. Blech was able
to  decipher  Shechtman’s  experimental  findings  and  offered  an  explanation,  known  as  the
Icosahedral  Glass  Model.  Together  they  attempted  to  interpret  the  diffraction  pattern  and
translate it to the atomic pattern of a crystal. They wrote an article that contained the model
and the experimental results, and submitted it to the Journal of Applied Physics in the summer
of 1984. But, the paper was immediately rejected by the editor, and came back seemingly by
return of post. They resubmitted it to the journal Metallurgical Transactions, and was published
(on the second try) in 1985, but his results were still mocked and derided.

                       

Fig. 9: Daniel Shechtmanand 3-D model of his quasicrystal

16



December 1, 2016 [IISRR-International Journal of Research; Vol-2, Issue-2]

Meanwhile, Shechtman asked John Werner Cahn, a renowned German-born American physicist
who had lured him over to NIST in the first place, to take a look at his data. The otherwise busy
researcher Cahn eventually did, and in turn, he consulted with a French crystallographer, Denis
Gratias, in order to see if Shechtman could have missed something. But according to Gratias,
Shechtman’s experiments were reliable. Gratias would have proceeded in the same manner had
he conducted the experiments himself. In November 1984, Physical Review Letters published
Shechtman’s discovery in a scientific paper co-authored with three other scientists: Ilan Blech
(Israel),  Denis Gratias (France),  and John Cahn (USA).  (Shechtman, Blech, Gratias,  and Cahn,
1984)  Wider  acclaim  followed,  mainly  from  physicists  and  mathematicians  and  later  from
crystallographers.  Cahn et  al’s  contribution to Shechtman’s work was primarily to confirm his
findings and conclusions about the existence of what came to be known as quasicrystals.

In its 5th October 2011 issue, The American Ceramic Society writes, “Shechtman’s assertions
made him an outcast for a few years, but his dogged pursuit of an explanation of his findings
eventually  put  him  ahead  of  other  researchers  who,  as  it  turns  out,  had  observed similar
patterns and data but had too-hastily dismissed the diffractions as being the result of twinned
or intermingled crystals.”

                                            
                                                        

         Fig. 10: Ten-fold way: Quasiperiodic patterns                      Fig. 11: A quasicrystal of silver aluminum
         have small repeating elements but on a larger scale              similar to the first quasicrystal of magnesium 
         do not exactly repeat (top). Daniel Schechtman’s                  aluminum discovered by Daniel Shechtman.  
         electron diffraction pattern from a metal alloy                       Although the pentagons in this quasicrystal
         shows spots with a ten-fold rotational symmetry,                  can’t fit together as squares and triangles do, 
         which researchers in 1984 thought was impossible                other atomic shapes fill the gaps — patching
         for a  crystal (bottom). Today researchers call the                  holes. (Photograph: Wikimedia Commons)           
         material a quasicrystal  because its structure is                            
         quasiperiodic. (Levine and Steinhardt, 1984)       

"When I came out with my results, people found it difficult to accept. It was easier to say 'Don't
they know anything about crystallography at Technion? Don't they read the books?' I had to
defend it a while," said Shechtman. It took two years from the initial discovery for Shechtman to
publish his results. After their publication, according to Shechtman, “all hell broke loose.”
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"Shortly  after  the  first  publication,  there  was  a  growing  community  of  avant-garde  young
scientists from around the world who all supported me and joined the fight, so I was not alone
anymore," he said. “But in the first two years I was alone.”
                    

                      

      Fig. 12: Electron diffraction pattern from an                           Fig. 13: A penteract (5-cube) pattern using 
        icosahedral quasicrystal containing perfect pentagons        5-D orthographic projection to 2-D using Petrie 
        (the presence of perfect pentagons highlighted in the         polygon basis vectors overlaid on the diffracto-   
        diagram to the right)                                                                gram from an icosahedral Ho-Mg-Zn quasicrystal 
                                                                                                         (Courtesy: Wikipedia)

Fig. 14: Penrose tiling that produced the X-ray diffraction pattern above found new form
                      of matter imagined in Islamic art. (Source: http://imageshack.com/f/n7penrosepattern1p)

                                  
During the same time (within six weeks) when Daniel’s results were published, (Shechtman,
Blech, Gratias, and Cahn, 1984) an American physicist Paul Joseph Steinhardt of the University
of  Pennsylvania  and  his  student  Dob  Levine  (an  Israeli  physicist)  had  quite  independently
identified similar geometrical  structure, and coined the term ‘quasicrystal’ because it  shared
some defining properties of crystals but lacked their regular repeating structure. (Levine and
Steinhardt, 1984; Steinhardt, 2013, 2007)

18



December 1, 2016 [IISRR-International Journal of Research; Vol-2, Issue-2]

Quasicrystals are the crystals found in the atoms of metals / materials that are structured in
certain pattern, but unlike a normal crystal, they do not repeat their patterns — they are non-
repeating  regular  patterns  of  atoms.  They  represent  a  new  state  of  matter  that  was  not
expected  to  be  found,  with  some  properties  of  crystals  and  others  of  non-crystalline
(amorphous)  matter,  such  as  glass.  Quasicrystals  once  thought  impossible  have changed
understanding of  solid  matter  and since Daniel’s  discovery,  they  have  been found in  other
substances.

Twenty  nine  years  after  Shechtman's  discovery,  the  Royal  Swedish  Academy  of  Sciences
awarded him the 2011 Nobel Prize in Chemistry, in recognition of his finding of quasicrystals,
metallic  alloys  with  atoms arranged in  orderly,  infinite,  aperiodic,  crystal-like  patterns  with
theoretically forbidden (typically 5-fold) symmetry.

3. WHAT ARE QUASICRYSTALS? 

A ‘quasiperiodic crystal’, also called ‘quasicrystal’, is a structure that is ordered but not periodic.
Quasicrystal  is  a form of solid matter whose atoms are arranged like those of a crystal  but
assume patterns  that  do  not  exactly  repeat  themselves.  It  is  a  body  of  solid  material  that
resembles a crystal in being composed of repeating structural units but that incorporates two or
more unit cells into a quasiperiodic structure. Basically, a quasicrystal is a crystalline structure
that breaks the periodicity (i.e., the ability to shift the crystal one unit cell without changing the
pattern  —  translational  symmetry)  of  a  normal  crystal  for  an  ordered,  yet  aperiodic
arrangement. This means that quasicrystalline patterns will fill all available space, but in such a
way that the pattern of its atomic arrangement never repeats. 

"Quasiperiodic crystals are still crystals — they have nothing to do with amorphous materials,"
said Daniel Shechtman. He further added, “Amorphous materials are non-ordered (like glass);
quasicrystals are crystals; but the atomic relation within them is different than periodic crystals.
It is perfectly ordered, but not periodic.” 

Earlier, chemists interpreted regularity in crystals as a periodic and repeating pattern. But, the
Fibonacci  sequence is also regular,  even though it  never repeats itself,  because it  follows a
mathematical  rule.  The inter-atomic distances in a  quasicrystal  correlate with the Fibonacci
sequence;  atoms  are  patterned  in  an  orderly  manner,  and  chemists  can  predict  what  a
quasicrystal looks like on the inside. But, this regularity is not the same as when a crystal is
periodic.  In  1992,  this  realization  led the International  Union of  Crystallography to alter  its
definition of what acrystal is. Previously a crystal had been defined as “a substance in which the
constituent  atoms,  molecules,  or  ions  are  packed  in  a  regularly  ordered,  repeating  three-
dimensional  pattern”.  The  new  definition  became  “any  solid  having  an  essentially  discrete
diffraction diagram”.  This  definition is  broader and allows for  possible future discoveries of
other kinds of crystals.
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Thus, a quasicrystal is a structure that is ordered but not periodic  — a form of solid matter
whose atoms are arranged like those of a crystal but assume patterns that do not exactly repeat
themselves. Quasicrystals  are a type of solid minerals or metals with structures in between
those of crystals and glasses (amorphous solids). A quasicrystalline pattern can continuously fill
all  available space, but it lacks translational symmetry. In other words, it is a locally regular
aggregation of molecules resembling a crystal in certain properties (such as that of diffraction)
but not having a consistent spatial periodicity. 

Before  the  discovery  of  quasicrystals,  the  prevailing  paradigm  in  crystallography  held  that
crystals are defined by a repeated unit cell and are mathematically constrained to only 2-, 3-, 4-,
or 6-fold symmetry. Symmetry simply means that one can rotate the crystal's unit cell a certain
number of degrees (e.g., 45 degrees, 60 degrees, etc.) and the unit cell will look the same as it
did  before  he /  she rotated it.  This  does  not  apply  just  to  unit  cells,  but  to 2-dimensional
geometric  figures  as  well.  For  example,  if  one  rotates  a  square  90-degrees  it  will  appear
indistinguishable from how it looked before he / she rotated it; but if the square is rotated 45
degrees it does not look the same — it has 4-fold symmetry. If an equilateral triangle is rotated
120 degrees, it will look indistinguishable from before it was rotated, so it has 3-fold symmetry.
If one rotates a hexagon 60 degrees it is indistinguishable from its initial position, so it has 6-
fold symmetry because it can be rotated six times before it is back to where it started. Forms
that were not regular and periodic (e.g., the pentagonal form Daniel Shechtman identified, as
explained  below)  were  deemed  impossible.  Five-fold  symmetry  was  prohibited  in  classical
crystallography.

Remark: A ‘unit cell’ is the smallest group of atoms which has the overall symmetry of a crystal,
and from which the entire lattice can be built up by repetition in three dimensions.  It is the
smallest building block of a crystal, consisting of atoms, ions, or molecules, whose geometric
arrangement defines a crystal's characteristic symmetry and whose repetition in space produces
a  crystal  lattice  —  a  geometric  arrangement  of  the  points  in  space  at  which  the  atoms,
molecules, or ions of a crystal occur. 

X-rays  first  revealed the internal  structure of  crystals  in  1912,  and from that  time onward,
scientists concluded that all crystals possessed rotational symmetry and a periodic structure.
According to the received wisdom at the time, a crystal was something which by definition was
both ordered and periodic, meaning that it exhibited a certain pattern at regular intervals. This
consensus held for more than 70 years. (Shtull-Trauring, 2011) 

But  symmetry is  not  the only  important  feature of  a  crystal.  These unit  cells  have to pack
themselves  together  tightly.  Mathematically,  only  2-,  3-,  4-  and  6-fold  symmetry  can  form
crystals; otherwise, there are gaps or holes in the structure. If we think of a tiled floor, we will
never see a tiled floor with all (regular) pentagons (5-fold symmetry) because they cannot pack
tightly.
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This nice, neat theory was overturned by Daniel Shechtman’s discovery of the crystal with 5-fold
symmetry, which was later named quasicrystal. Generally, quasicrystals are crystals that display
‘forbidden’ symmetry. An additional characteristic of a crystal with forbidden symmetry is that it
is aperiodic. That is, it lacks a repeating pattern. 

The atoms in the crystal  in front of him yielded a forbidden symmetry.  Such a pattern was
considered just  as  impossible  as  creating  a  football  — a  sphere  — using  only  six-cornered
polygons,  when  a  sphere  needs  both  five-  and  six-cornered  polygons.  But,  since  Daniel
Shechtman’s  discovery,  Islamic  mosaics  with  intriguing  patterns  and  the  golden  ratio  in
mathematics and art have helped scientists to explain Shechtman’s bewildering observation.

Mathematician  Roger  Penrose  had  theorized  a  2-dimensional  pattern  consisting  of  5-fold
symmetry that was aperiodic. Shechtman's quasicrystals seemed to follow Penrose's pattern.
Using X-ray diffraction studies, Shechtman found that his material (an aluminum-manganese
alloy, Al6Mn) had all of the features of a crystal but it had forbidden symmetry.

The  quasicrystals  are  found in  almost  every metal  and these quasicrystals  have  an  uneven
structure which means they do not have obvious cleavage (sundering) planes thereby making
them particularly hard in nature. 

4. QUASICRYSTALS AND ISLAMIC MOSAICS:

Mathematicians like to challenge themselves with puzzles and logic problems. During the 1960s,
they began to ponder whether a mosaic could be laid with a limited number of tiles so that the
pattern  never  repeated  itself,  to  create  a  so  called  aperiodic  mosaic.  The  first  successful
attempt was reported in 1966 by an American mathematician Robert Berger, but it required
20,426 different tiles and was thus far from pleasing mathematicians' penchant for parsimony.
(Berger, 1966)  As more and more people took on the challenge, the number of tiles required
steadily shrank.  After Berger's discovery, various mathematicians considered the question of
finding a smaller set of aperiodic prototiles and discovered sets of aperiodic prototiles with
fewer and fewer prototiles. One well-known set of six aperiodic prototiles was discovered in
1971 by Raphael  Mitchel  Robinson (1911-1995),  another  American mathematician from the
University of California, Berkley. (Robinson, 1971)

Finally, in the mid-1970s, a British professor of mathematics, Roger Penrose, provided a most
elegant solution to the problem. He created aperiodic mosaics with just two different tiles, for
example, a fat and a thin rhombus (Fig. 15). Penrose tiling is the first aperiodic tiling constructed
by Roger Penrose with two types of rhombic tiles, where the entire pattern is generated by a
local joining rule referred to as the ‘matching rule’, which requires each of the tiles to complete
types and directions of the arrowheads on the tile edges, as shown in Fig. 15(b).
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                     Thin tile           Thick tile
                                        (a)                                      (b)                                            (c)

Fig. 15: (a) The two prototiles (the thick and thin rhombs) in the aperiodic set discovered by Penrose;
(b) Penrose tiling by thick and thin rhombs with arrows indiacting the matching rules;  

(c) Penrose tiling by thick and thin rhombs (the arrows indicating the matching rules are omitted)

Penrose's  mosaics inspired the scientific  community in several  different ways.  Among other
things, his findings have since been used to analyze medieval Islamic Girih patterns, and now it
has been learned that Islamic artists produced aperiodic mosaics out of five unique tiles (the
Girih tiles) as early as the 13th century CE. Such mosaics decorate the extra-ordinary Alhambra
Palace in Spain, for example, and portals and vaults of the Darb-i Imam Shrine in Isfahan, Iran.
Girih tiles are a set of 5 different tile shapes (Fig. 16) that were used (in intricate girih patterns)
in the creation of tiling patterns for decoration of buildings in Islamic architecture since the 13 th

century  CE.  They  are  known  to  have  been  used  since  about  the  year  1200  CE  and  their
arrangements found significant improvement starting with the Darb-i Imam shrine built in 1453
CE. The details of the aforesaid five shapes of the tiles are:

 a regular decagon with ten interior angles of 144°;
 an elongated (irregular convex) hexagon with interior angles of 72°, 144°, 144°, 72°, 144°,

144°;
 a regular pentagon with five interior angles of 108°;
 a rhombus with interior angles of 72°, 108°, 72°, 108°; and
 a bow-tie (non-convex hexagon) with interior angles of 72°, 72°, 216°, 72°, 72°, 216°.

All  sides  of  the  five  different  tile  shapes  are  of  the  same  length;  and  all  their  angles  are
multiples  of  36°  (π/5).  These  five  figures,  except  the  pentagon,  have  bilateral  (reflection)
symmetry through two perpendicular lines. Some have additional symmetries. Specifically, the
decagon  has  tenfold  rotational  symmetry  (rotation  by  36°);  and  the  pentagon  has  fivefold
rotational symmetry (rotation by 72°).

                                                        
                        Decagon                   Pentagon                     Rhombus         Hexagon (Bobbin)         Bow-tie      

Fig. 16: Girih tiles: Lu’s description of five shapes as ‘girih tiles’ (Source: Prange, 2009)
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        Fig. 17: Girih tiling (Prange, 2009)           Fig. 18: Periodic girih pattern  from the Seljuk Mama Hatun    
                                                                              Mausoleum in Tercan, Turkey (~1200 CE), with girih-tile
                                                                              reconstruction overlaid at bottom (Source: Al-Hassani, 2010)

The British crystallographer Alan Mackay applied the Penrose mosaic in yet another manner. He
was curious as to whether atoms, the building blocks of matter, could form aperiodic patterns
like the mosaics.  In 1982, he conducted an experiment with a model  where he substituted
circles, representing atoms, at intersections in the Penrose mosaic (Fig. 19). He then illuminated
the model and obtained a ten-fold diffraction — a tenfold symmetry — with ten bright dots in a
circle (Fig. 19). 

Fig. 19: Mackay's simulated diffraction pattern from a Penrose tiling

Mackay made significant scientific contributions related to the structure of materials. In a 1962
paper, he showed how to pack atoms in an icosahedral fashion — a first step towards five-fold
symmetry in materials science — these arrangements are now known as  Mackay icosahedra.
(Mackay, 1962) A pioneer in the introduction of five-fold symmetry in materials,  in another
paper in 1981, Mackay predicted quasicrystals in which he used a Penrose tiling in two and
three  dimensions  to  predict  a  new  kind  of  ordered  structures  not  allowed  by  traditional
crystallography. (Mackay, 1981) In a later paper, in 1982, he took the optical Fourier transform
of a 2-D Penrose tiling decorated with atoms, obtaining a pattern with sharp spots and five-fold
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symmetry. (Mackay, 1982) This brought the possibility of identifying quasiperiodic order in a
material through diffraction, and almost during the same time, Quasicrystals with icosahedral
symmetry were found by Daniel Shechtman and co-workers. (Shechtman, Blech, Gratias, and
Cahn, 1984)

The  connection  between  Mackay's  model  and  Shechtman's  diffraction  pattern  was
subsequently made by the physicists Paul Steinhardt and Dov Levine. (Levine and Steinhardt,
1984) Before Shechtman's article appeared in Physical Review Letters, the editor sent it off to
other scientists for review. During this process, Steinhardt got the opportunity to read it. He
was already acquainted with Mackay's model, and realized that Mackay's theoretical ten-fold
symmetry existed in real life in Shechtman's laboratory at NIST.

On Christmas Eve, 1984, only five weeks after Shechtman's article appeared in print, Steinhardt
and Levine published an article where they described quasicrystals and their aperiodic mosaics.
(Levine and Steinhardt, 1984) Quasicrystals got their name in this article.

In every metal, atoms are arranged in a typical symmetrical form. Daniel Shechtman discovered
that the atoms had crystal structures in frozen gobbets of metal that had beautiful patterns,
similar to those found on Islamic mosaics. In quasicrystals, he found the fascinating mosaics of
the  Islamic  world  reproduced  at  the  level  of  atoms:  regular  patterns  that  never  repeat
themselves.  Aperiodic  mosaics,  such as  those found in the medieval  Islamic mosaics of  the
Alhambra Palace in Spain and the Darb-i Imam Shrine in Iran, have helped scientists understand
what  quasicrystals  look  like  at  the  atomic  level.  In  those  mosaics,  as  in  quasicrystals,  the
patterns are regular — they follow mathematical rules — but they never repeat themselves.
Shechtman found that the atoms were arranged in such a way that they broke the rules of how
crystals are formed, and altered the views of other scientists. 

Penrose tiles allow a two-dimensional area to be filled in five-fold symmetry, using two shapes
based on Phi (φ), the golden ratio.  It was thought that filling a three-dimensional space in five-
fold symmetry was impossible, but the answer was again found in Phi. Where the solution in 2-
D required two shapes, this can be accomplished in 3-D with just one shape.  The shape has six
sides, each one a diamond whose diagonals are in the ratio of Phi (φ).

For the first time Daniel  observed a three-dimensional example of a Penrose pattern in the
material  world  —  quasiperiodic  crystals,  also  known  as  quasicrystals.  (Shechtman,  Blech,
Gratias, and Cahn, 1984) An alloy of aluminum and magnesium (Al6Mn) was discovered in the
laboratory which exhibited the symmetry of an icosahedron with five-fold axis — it showed the
kind  of  symmetries  and  non-periodic  patterns  previously  known  only  theoretically  from
Penrose’s tiling by thick and thin rhombs (or kites and darts).  Shechtman’s image showed that
the  atoms  in  his  crystal  were  packed  in  a  pattern  that  could  not  be  repeated.  Atoms  of
quasicrystals pack space with pentagonal symmetry based on Phi (the golden ratio) (Fig. 22).
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 Fig. 20: Quasicrystals
Muslim  artists  had  discovered  and  used  quasicrystal  geometry  500  years  before  it  was
discovered in the West. David R. Nelson, Professor of Physics at Harvard University writes:

“Shechtmanite quasicrystals are no mere curiosity. The study of quasicrystals has tied together
two existing branches of theory: the theory of metallic glasses and the mathematical theory of
aperiodic tilings. In doing so it has brought new and powerful tools to bear on the study of
metallic alloys. Questions about long- and short-range icosahedral order should occupy solid-
state physicists and materials scientists for some time to come.” (Nelson, 1986)

         
                    (a)                                              (b)                                             (c) 

Fig. 21: Islamic mosaics [Fig. 21 (b) shows the decagonal pattern on the 17th-century lodging complex
of Nadir Divan Beg in Uzbekistan — an example of how the mathematical pattern of crystals discovered

by Shechtman had been used in architecture for centuries — art imitates Science.]

                   
        Fig. 22: Metallic quasicrystals: photo, courtesy              Fig. 23: Scanning electron microscopy of
        of Division of Applied Physics, Graduate School            quasicrystal  isocahedra: photo, Science Stuff,
        of Engineering, Hokkaido University, Japan                    Epic Science, Random
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When one translates Penrose tiling to a  three-dimensional  atomic lattice,  he / she has  the
essence of a quasicrystal. The important takeaway here, according to Shechtman, is that "there
is not a motif of any size that repeats itself. So there is order, and yet there is no periodicity."
The order is derived from the fact that anyone could reconstruct the Fibonacci sequence or
Penrose tiles, yet despite this order, if the sequence or tiling is shifted in any way it is impossible
to derive an exact repetition.

Among several ways to mathematically define quasicrystalline patterns, one definition, the ‘cut
and project’ construction, is based on the work of Harald Bohr (mathematician brother of Niels
Bohr,  the  1922  Nobel  Laureate  Danish  physicist  who  made  foundational  contributions  to
understanding  atomic  structure  and  quantum  theory).  The  concept  of  an  almost  periodic
function (also called a quasiperiodic function) was studied by Bohr, including works of Piers Bohl
(Latvian mathematician) and Ernest Esclangon (French astronomer and mathematician). (Bohr,
1925) He introduced the notion of a superspace. Bohr showed that quasiperiodic functions arise
as restrictions of high-dimensional periodic functions to an irrational slice (an intersection with
one or more hyperplanes), and discussed their Fourier point spectrum. These functions are not
exactly periodic, but they are arbitrarily close in some sense, as well as being a projection of an
exactly periodic function. In order that the quasicrystal itself be aperiodic, this slice must avoid
any lattice plane of the higher-dimensional lattice. De Bruijn (1981) showed that Penrose tilings
can be viewed as two-dimensional slices of five-dimensional hypercubic structures. 

Non-periodic tilings can also be obtained by projection of higher-dimensional structures into
spaces with lower dimensionality and under some circumstances there can be tiles that enforce
this non-periodic structure and so are aperiodic. The Penrose tiles are the first and most famous
example of this, as first noted in the pioneering work of de Bruijn. (De Bruijn, 1981) There is yet
no complete  (algebraic)  characterization  of  cut  and project  tilings  that  can  be enforced by
matching rules, although numerous necessary or sufficient conditions are known. (Le, 1997) 

5. QUASICRYSTALS AND GOLDEN RATIO:

When  scientists  describe  Shechtman’s  quasicrystals,  they  use  a  concept  that  comes  from
mathematics and art:  the  golden ratio(Phi).  This number had already caught the interest of
mathematicians  in  ancient  Greece,  as  it  often  appeared  in  geometry.  In  quasicrystals,  for
instance, the ratio of various distances between atoms is related to the golden ratio (Phi).

Remark:  Phi (Φ), the golden ratio, or the divine proportion, or the proportion of beauty, is an
irrational and transcendental number named after the Greek architect Phidias who designed the
magnificent Parthenon temple in Greece, dedicated to the Goddess Athena, whom the people of
Athens considered their patron. Phi is the first three characters of Phidias. It is the division of a
line with any given length into a larger part and a smaller part so that the ratio of the whole line
to the larger part is the same as the ratio of the larger part to the smaller part. This occurs only
when the whole is 1.618033... times the larger part and the larger part is 1.618033... times the
smaller part.
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A fascinating aspect of  both quasicrystals  and aperiodic  mosaics is  that  the golden ratio of
mathematics  and  art,  the  mathematical  constant  Phi (φ),  occurs  over  and  over  again.  For
instance,  the ratio  between the numbers  of  fat  and thin  rhombi  in  Penrose's  mosaic  is  φ.
Similarly, the ratio of various distances between atoms in quasicrystals is always related to φ. 

The mathematical constant φ is described by a sequence of numbers that the great 13 th-century
Italian mathematician Leonardo Fibonacci worked out from a hypothetical experiment dealing
with rabbit reproduction. In this well-known sequence, each number is the sum of the two
preceding numbers: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, etc. If one of the higher numbers in
the Fibonacci sequence is divided by the preceding number — for instance, 144/89 — a number
close to the golden ratio is obtained. Both the Fibonacci sequence and the golden ratio are
important to scientists when they want to use a diffraction pattern to describe quasicrystals at
the atomic level. The Fibonacci sequence can also explain how the discovery awarded the Nobel
Prize in Chemistry 2011 has altered chemists' conception of regularity in crystals.  [See Livio
(2008) and Dunlap (2003) for details about golden ratio and Fibonacci numbers.]

The Fibonacci  sequence can be seen as a 1-D analog to Daniel  Shechtman’s quasicrystal,  in
which there is order without repetition. The 2-D analog was discovered in 1974 by the famous
English mathematician and physicist Roger Penrose. (Oberhaus, 2015) 

The Golden Ratio continues to open new doors in our understanding of life and the universe. As
we progress through the 21st century, Phi seems to be having a rebirth in integrating knowledge
across a wide variety of fields of study, including time and quantum physics.

6. ATOMIC THEORY:

In the world of atoms,  there are four fundamental asymmetries (structure of atomic nuclei,
distribution of fission fragments, distribution of numbers of isotopes, and the distribution of
emitted particles), and it is significant that "the numerical values of all of these asymmetries are
equal  approximately  to  the  `golden  ratio’,  and  that  the  number  forming  these  values  are
sometimes Fibonacci or `near' Fibonacci numbers." (Wlodarski, 1963)  In changing states of a
quantity of hydrogen atoms, as the atoms gain and lose radiant energy at succeeding energy
levels, the changing proportion of the histories of the atomic electrons form Fibonacci numbers.
(Huntley, 1969)

The golden ratio (φ) provides a quantitative link between various known quantities in atomic
physics.  While  searching  for  the  exact  values  of  ionic  radii  and  for  the  significance  of  the
ionization potential of hydrogen, Heyrovska (2005, 2009) has found that the Bohr radius can be
divided into two golden sections pertaining to the electron and proton. More generally, it was
found that φ is  also the ratio of  anionic  to cationic  radii  of any atom, their  sum being the
covalent bond length. After that she showed, among other facts, that many bond lengths in
organic and inorganic molecules behave additively, and are the sum of the covalent and / or the
ionic radii, whether partially or fully ionic or covalent. In addition, a new interpretation and a
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very accurate value of the fine structure constant  α has been discovered in terms of the golden
angle.  (The  fine-structure  constant  is  a  fundamental  physical  constant  characterizing  the
strength of the electromagnetic interaction between elementary charged particles. The fine-
structure constant is a unitless numerical constant  — whose value is approximately equal to
1/137.508.) Thus, it is to be noted that  α is quite a small number, very nearly 1/137, i.e.,  α-1 =
(360 - 2/ϕ)/ϕ2 = 137.036 or  α = ϕ2/(360 - 2/ϕ) = 0.0072974.

"In the last few years, the Golden proportion has played an increasing role in modern physical
research and it has a unique significant role in atomic physics. (Heyrovska, 2005) The Golden
proportion is found to govern the transition from Newtons physics to relativistic mechanics and
the Golden rectangle has been used to derive the dilation of time intervals and the Lorentz
contraction of lengths in special relativity.” (Sigalotti and Mejias, 2006)

7. QUASICRYSTALS IN NATURE:

Since their discovery in 1982, hundreds of quasicrystals have been synthesized in laboratories
around  the  world.  In  the  summer  of  2009,  however,  scientists  first  reported  quasicrystals
occurring  in  nature.  Scientists  led  by  Paul  Joseph  Steinhardt,  an  American  physicist  and
cosmologist from Princeton University, have discovered a new kind of mineral (a rare form of
solid) — an icosahedral quasicrystal that includes six distinct five-fold symmetry axes — in a
rock sample  taken from the Khatyrka River  in Koryak Mountains in North Eastern Russia. The
mineral (quasicrystal) in question is an alloy of aluminum, copper, and iron (with composition
Al71Ni24Fe5),  and  yields a diffraction pattern with ten-fold symmetry. It is called icosahedrite,
after the icosahedron, a geometrical solid with sides consisting of 20 regular three-cornered
polygons  and with the  golden ratio  integrated  into  its  geometry.  It  was  discovered  in  the
Khatyrka  meteorite  (Bindi,  Steinhardt,  Yao,  and Lu, 2009) — nature’s quasicrystal  seems to
come  from  a  meteorite  some  4.5  billion  years  old:  far  from  an  artificial  innovation,  the
quasicrystal may be one of the oldest minerals in existence, formed at the birth of the Solar
System. The finding was published in the Proceedings of the National  Academy of Sciences.
(Bindi, 2012)

                          
    Fig. 24: World's Only Known Natural Quasicrystal              Fig. 25: Image of Paul J. Steinhardt and his team at 
    Traced  to Ancient  Meteorite — Scientific American         the Russian excavation site (Credit: Paul J. Steinhardt)
    (Credit: Paul J. Steinhardt who discovered it in          
    Russian  Koryak Mountains)
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Quasicrystals have unusual properties and have previously been made only in the laboratory. Its
discovery in nature could redefine the field of mineralogy and expand our understanding of how
quasicrystals form, leading to new applications. The results suggest that quasicrystals can form
and remain stable under geologic conditions, although there remain open questions as to how
this mineral formed naturally.

8. HOW QUASICRYSTALS ARE GOING TO CHANGE OUR LIFE? 

This new form of matter possesses some unique and remarkable crystallographic and physical
properties, embodying a novel kind of crystalline order. Daniel’s findings demonstrated a clear
diffraction pattern with a five-fold symmetry.  Since then, quasi-crystals  have been found in
other substances. The materials have interesting properties, often being harder or tougher than
their crystalline counterparts, and having low surface friction or unusual optical behaviour.

With the discovery of quasicrystals, a lot of changes are bound to occur in our everyday life.
Background material provided by the Royal Swedish Academy of Sciences reports that hundreds
of different types of quasicrystals have now been synthesized and that at least one natural
mineral has been found to have that structure. Many more such crystals are expected to be
discovered in near future for different metals. Our day-to-day applications may change. For
example, a Swedish company found them in one of the most durable kinds of steel, which is
now used in products such as razor blades and thin needles made specifically for eye surgery,
the academy said. With quasicrystals, there is a likelihood of possible merge of applications in
near future to make our life simpler and easier. Quasicrystals are also being studied for use in
new materials that convert heat to electricity.

Here is what the Royal Swedish Academy says about the uses of quasicrystals (as quoted by The
American Ceramic Society, October 5, 2011):

“When trying out different blends of metal, a Swedish company managed to create steel with
many surprisingly good characteristics. Analyses of its atomic structure showed that it consists
of  two  different  phases:  hard  steel  quasicrystals  embedded  in  a  softer  kind  of  steel.  The
quasicrystals function as a kind of armor. This steel is now used in products such as razor blades
and thin needles made specifically for eye surgery.

“Despite being very hard, quasicrystals can fracture easily, like glass. Due to their unique atomic
structure, they are also bad conductors of heat and electricity,  and have non-stick surfaces.
Their  poor  thermal  transport  properties  may make them useful  as  so-called  thermoelectric
materials … Today, scientists also experiment with quasicrystals in surface coatings for frying
pans, in components for energy-saving light-emitting diodes, and for heat insulation in engines,
among other things.”
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Professor  Daniel  Shechtman describes the quasicrystals  as  the most beautiful  and potential
protective layer in future alloys and protective coatings in various applications. This discovery is
truly a celebration of fundamental research.

“Quasicrystals are very hard and are poor conductors of heat and electricity, offering uses as
thermoelectric materials, which convert heat into electricity. They also have non-stick surfaces,
handy  for  frying  pans,  and  appear  in  energy-saving  light-emitting  diodes  (LEDs)  and  heat
insulation in engines.” (Lannin and Veronica, 2011) The Nobel Prize recognizes a breakthrough
that has fundamentally altered how chemists conceive of solid matter.

The lesson: "A good scientist is a humble and listening scientist and not one that is sure 100
percent in what he read in the textbooks." — Daniel Shechtman 
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